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On the Shape of Wedding Cakes 
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The large-scale morphology of a growing surface is characterized for a simple 
model of crystal growth in which interlayer transport is completely suppressed 
due to the Ehrlich-Schwoebel effect. In the limit where the ratio of the surface 
diffusion coefficient to the deposition rate D/F~ ~ the surface consists of 
wedding-cake-like structures whose shape is given by the inverse of an error 
function. The shape can be viewed as a separable solution of the singular diffu- 
sion equation u, = [u-2u,.].,.. As an application, expressions for the number of 
exposed layers as a function of coverage and diffusion length are derived. 

KEY WORDS: Crystal growth; growth instability; surface diffusion; singular 
diffusion equations; hydrodynamic limit. 

1. I N T R O D U C T I O N  

The wedding  cake m o r p h o l o g y  is a c o m m o n  occurrence  in the low- 
t empera tu re  epi taxia l  g rowth  of  meta l  surfaces ~1-3) (see ref. 4 for review). 
Mic roscop ica l ly  it or ig inates  from an excess energy ba r r i e r  at  s tep edges, 
which prevents  a t o m s  from descending  f rom the a tomic  layer  on which they 
have been deposi ted .  151 As a consequence  the concen t ra t ion  of  adso rbed  
a toms  (adatoms)  on top  of  two-d imens iona l  is lands is increased,  such tha t  
second- layer  nuc lea t ion  occurs  well before the f irst- layer has  been com-  
pleted.  This  process  repeats  itself in subsequent  layers,  giving rise to a 
wedding-cake- l ike  s t ructure  of  is lands on  top  of  islands. 

In  th~ present  pape r  I descr ibe  the asympto t ic ,  large-scale shape  of  
these s t ructures  within a min ima l  one-d imens iona l  g rowth  mode l  t6~ in 
which in ter layer  t r a n s p o r t  is comple te ly  inhibi ted.  F o r  this l imit ing case the 
layer  coverages  are  k n o w n  to follow a Po i sson  d is t r ibut ion ,  tT) Toge the r  
wi th  a few plaus ib le  s implifying assumpt ions ,  this turns  out  to be sufficient 
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to deduce the shape. Alternatively, the shape can be obtained as a 
separable solution of a singular diffusion equation, which has been studied 
previously in a variety of contexts. ~8-t ~ 

The growth model and its basic phenomenology is introduced in 
Section 2. Section 3 shows how the coverage distribution translates into the 
shape. A derivation of the continuum limit for the growth process is given 
in Section 4, and the relation to singular diffusion is discussed. Finally, 
Section 5 contains some results for two-dimensional surfaces. 

2. M O D E L  A N D  P H E N O M E N O L O G Y  

Consider the one-dimensional integer lattice of sites x, with an integer 
height variable h.,. defining the position of the surface above x. The model 
allows for two processes: 16~ At rate F atoms are deposited at a randomly 
chosen position (h,.-+ h,. + 1), and at rate D singly bonded adatoms hop 
to neighboring sites (h,- ~ h.,. - 1, h,, ~ h,, + 1, y = x -+_ 1), provided they 
remain within the same layer (h.,, = h., .-  1 prior to the move). Atoms with 
more than one nearest neighbor bond (that is, with at least one horizontal 
bond) are immobile. 

Since the time t will usually be measured in units of the coverage 

O=Ft (1) 

the only model parameter is the ratio D/F; the interest is in the case 
D/F>> 1, where long-ranged lateral correlations can develop. Figure 1 
illustrates the time evolution, starting from a flat substrate (h , -=0) ,  for 
D/F=5 • 10 6. Initially a freshly landed atom diffuses over the substrate 
until it encounters a second atom with which it forms an immobile dimer. 
The dimers act as nucleation centers for islands, which set the scale for the 
subsequent morphological evolution. Scaling arguments 1~21 and simula- 
tions~6, ~21 show that the spacing L between first-layer islands is of the order 

L.,~(D/F) 1/4 (2) 

in one dimension. 
Figure 1 indicates that the positions of the first-layer nucleation events 

essentially fix the positions of the peaks of the wedding cakes at all later 
times. This is because, after the deposition of a few layers, the peaks typi- 
cally consist of towers one or at most two columns wide, which forces the 
nucleation of the next layer to occur at the same lateral position as in the 
layer below. In other words, due to the suppression of interlayer transport, 
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Fig. I. Surface morphology for a system of 500 sites with D/F=5 x 106. Surface configura- 
tions after deposition of (a) {from bottom to top) l, 5.6, 16, and 32 monolayers (ML), and 
(b) after 45.25, 90.5, 181,256, and 362 ML. Note the different height scales in the two images. 
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the maxima of h,- form perfect barriers for the lateral mass transport. The 
same is true for the minima, due to the "Zeno effect" described by Elkinani 
and Villain: ~13~ Since only atoms which land at the level of the minimum 
contribute to the advancement of the adjoining steps, it takes a very long 
time for minima to close. These observations will become important in 
Section 3. 

While the lateral structure is essentially frozen, the wedding cakes 
clearly steepen in the course of time. Figure 2 shows that the rescaling 

h,. = 0 + ~ h(x) (3) 

collapses the configurations at different times. This scaling is to be expected, 
since the variance of h.,. is given by 

W 2 = ( (h.,.- O) 2 ) =O (4) 

independent of DIE. 171 Here we are mainly concerned with characterizing 
the typical shape of h(x) which is discernible in Fig. 2. 
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Fig. 2. Configurations after deposition of I024. 2048, 4096, and 5792 ML, rescaled according 
to (3). 
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3. COVERAGE REPRESENTATION 

The above discussion reveals two somewhat distinct sources of disor- 
der in the growth process: one results from the irregularities in the spacings 
of the first layer nuclei, while the other is due to the shot noise during 
growth. To proceed, we eliminate the first source by focusing on half a 
wedding cake, i.e., the ascending hillside between a minimum and a maxi- 
mum. We assume that no mass flux can pass the extrema, thus effectively 
placing the surface in a closed box of lateral size L / 2  (Fig. 3). Moreover, 
we neglect the nucleation of new wedding cakes inside the box; since the 
morphology steepens, and consequently the terraces become shorter and 
shorter in the course of time, this is a reasonable approximation, though 
simulations show that occasionally new peaks can appear rather late in the 
growth process. The absence of nucleation implies that we let D / F - *  

inside the box, and the model parameter D / F  enters only through the 
(externally imposed) length scale L. 

After this sequence of approximations the surface has the shape of an 
ascending staircase which can be described by the set {lh} of (exposed) 
terrace lengths at height h (Fig. 3). For D / F - *  oo the lh have the dynamics 
of a noninteracting, fully asymmetric zero-range process. 161 In particular, 
the averages satisfy the linear equations 

d 
v -  - - - - ~ ( l h ) = ( l h - ' ) - ( l h ) '  h = 1 , 2 , 3  ..... (5) 

h 

0 
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Fig. 3. Staircase geometry for half a wedding cake. 
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The bottom terrace (the exposed part of the substrate) evolves according 
to the Zeno equation ~ 13) 

d 
~-~ </o> = - ( l o )  (6) 

The solution with initial conditions /hz~= 0 and l o =L/2 is the Poisson 
distribution 

L e -  ~ 
(/,,) - ( 7 )  

2 h! 

which for large coverages becomes a Gaussian, 

( lh )  = (L/2)(2~zO)- I/2 exp[ --(h - 0)2/20] (8) 

To transform this into the coarse-grained height profile h(x, t ) =  
(h,-(t)) we merely note that the local terrace size is the inverse of the local 
slope, 

( l h )  = Ox/Oh (9) 

Integrating (8), we find the inverse height profile 

x(h, t) = (L/4)(1 + erf(A)) (10) 

where 

and 

h - O  ~-v/~ (11) 

e r ~ z ) = ( 2 / x / ' ~ ) f ~ d y e  -.''2 (12) 

Equation (10) confirms the scaling form (3) and identifies the scaling func- 
tion for half a wedding cake as 

h(x) = x/r2 erf-t(4x/L - 1 ) (13) 

Fig. 4 compares the asymptotic prediction with simulated wedding cakes; 
only the lateral size L has been fitted. The agreement is expected to 
improve for larger L, though presumably the relative fluctuations in the 
lateral spacing of wedding cakes (Fig. 1 and 2) will not decrease. 
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Fi 8. 4. Comparison of simulated wedding cakes (at 5792 ML)  with the predicted asymptotic 
s h a p e  ( d a s h e d  c u r v e ) .  T h e  l a t e r a l  d i s t a n c e  L b e t w e e n  m i n i m a  h a s  b e e n  f i t t ed ,  a n d  t h e  s h a p e  

h a s  b e e n  s h i f t e d  l a t e r a l l y  t o  m a k e  t h e  p e a k s  c o i n c i d e .  
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The shape is up-down symmetric under reflection at h = 0; it will be 
seen in Section 5 that this is true only in one dimension. Moreover the 
height diverges, as h ~ - lx / i -~ /x) ,  at the minima (and correspondingly at 
the maxima). Of course this divergence is cut off when the width of a 
groove or a peak becomes equal to the lattice spacing. This can be used to 
estimate the typical peak-to-valley height difference H--equivalently, the 
number of exposed layers--of the wedding cakes. Since (10) describes only 
half a wedding cake, the height of a minimum is obtained by setting 
x(h)  = 1/2. Consequently 

where Ao is the solution of 

H=.v/-~Ao(L) (14) 

L 
Ao exp[Ao] - 2,/; (15) 

which is a very slowly varying function of L. 
These results are directly applicable to the experiments of Albrecht 

et al. ('-) in which the formation of one-dimensional ridges with wedding- 
cake-like cross sections was observed during the homoepitaxy of Fe on 
Fe(ll0). Using low-energy electron diffraction (LEED), the evolution of 
the average terrace size [ with coverage 0 was monitored. At a growth 
temperature of 200 K it was found that lv/O remained constant,'- at about 
10.7 atomic distances, for 1.9~<0~<9. Since the wedding cake profile is 
monotonic between extrema, it follows that f=  L/2H,  and using (14), 

(16) [v/~ = L ~ 
Ao(L) ~ e x p [ A s ]  

Inserting the experimental value, one obtains d o ~ 1.68, and from (15) the 
spacing of the ridges is estimated to be L ~ 102 atomic distances, about a 
factor of two larger than the estimate obtained by Albrecht et al. using a 
simpler, triangular model for the ridge shape; unfortunately, a direct 
measurement of L was not reported. 

4. C O N T I N U U M  L IM IT  A N D  S INGULAR D IFFUSION 

In this section it is shown how the shape function (13) can be derived 
directly from a continuum equation of motion for the growing surface 

2 The scaling [~  t/x/~ was also reported by Henzler TM for two-dimensional wedding cakes on 
Ag(ll l) .  
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h(x, t). Such an equation has previously been proposed on heuristic 
grounds j6. ~4. ~51 The argument can be explained using the configuration in 
Fig. 3: An atom landed on a terrace of size l moves, on average, a distance 
l/2 toward the ascending step edge, in the "uphill" direction. This implies 
a mass current J=Fl/2=(F/2)(Oh/Ox) -~ [compare to (9)]. The surface 
evolves through deposition and mass transport along the surface, hence 

Oh OJ F 0 (Oh~-' 
Ot=--O---~+r=--~O--~\Oxj + r  (17) 

It is not clear that the argument remains valid in the regime Oh/Ox > 1 of 
primary interest here; we therefore provide a more careful derivation based 
on the exact equation (5) for the terrace lengths. 

Let l(h,t)  denote the coarse-grained version of (lh(t)) .  It is 
straightforward to derive an equation of motion for l(h, t) starting from 
(5). First we introduce the Fourier transform 

f(q, t) = y" e"l"( Ih( t) ) (18) 
h 

which satisfies 

Of/O0 = (exp(iq) - 1) f (19) 

Coarse graining is accomplished by expanding e x p ( i q ) - 1  ~ i q - q 2 / 2 +  
O(q3), and transforming back into real space, we have 

0l 0l 1 021 
(20) 

O0 Oh 2 Oh'-" 

Next we need to rewrite (20) in terms of h(x, t) or, equivalently, in 
terms of the local slope u(x, t)=Oh/Ox= 1/l. This is achieved through a 
somewhat subtle manipulation 181 which has been referred to as a Lagrange 
transformation. Itj~ First we introduce x(h,t),  the inverse of h(x,t). 
Evidently - 

Ox/Oh=l (21) 

Taking the time derivative of (21) and using (20), we further obtain 

ax/OO = - t +  (1/2) 0l/0h (22) 
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Now we can define an auxiliary function l'(x, t ) =  1/u(x, t) through 

l(h, t )= "~x(h, t), t) (23) 

Inserting (23) into (20) and using Eqs. (21) and (22), we find that several 
cancellations occur, and we are left with an autonomous equation for 7, 

01" 1 ? 02l " (24) 
O0 2 Ox z 

In terms of u(x, t) = lff(x, t) this becomes 

Ou 1 0 z 1 1 0 Ou (25) 
0--0 = --2 -ax 2 u 20x  u - 2 0 x  

which is precisely the spatial derivative of (17). 
Equation (25) has the form of a strongly singular diffusion equation 

with a diffusion coefficient diverging as u-2 for u ~ 0. It was first studied 
[in the form (24)] by Rosen ~81 in the context of heat conduction in solid 
H 2, who also observed that it can be linearized [into the form (20)] by 
following the reverse of the above procedure. Subsequently Bluman and 
Kumei ~9~ pointed out that the linearizability of the equation is related to 
the invariance under an infinite number of Lie-Bficklund transformations; 
further results can be found in refs. 10 and 11. It is amusing to note that 
the simple growth model studied in this paper provides both a natural 
stochastic realization of the singular diffusion equation (25), and an 
intuitive interpretation of the linearizing transformation leading from (25) 
to (20). 

It is now straightforward to verify that (13) can be obtained as a 
separable solution of the height equation (17). With the Ansatz 

h(x, t ) = O +  A(t) g(x) (26) 

we find 

gt! 
2 A A -  - - - C > 0  (27) g(g,)2 

since A, A > 0; here A = dA/dO and g ' =  dg/dx. We then observe that the 
differential equation for g is solved by setting 

g' = exp[ (C/2) g2] (28) 
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The zero-current boundary conditions J =  ( F / 2 ) ( A g ' )  - I  = 0  at x = 0 and 
x = L / 2  force g' and thus g to diverge at the boundaries. Consequently the 
integration constant C in (27) is fixed by 

F d g ( d x / d g )  = dg exp[ - (C /2 )  g2] = L /2  (29) 
- -  ,-:t2. - -  ~ 

so that C =  8rc/L'-. Now (28) can be integrated, and yields 

g ( x )  = (L /2  ,,/ '~) erf - ' (4x/L - 1) (30) 

Finally the equation for A is integrated with initial condition A(0)=0,  
resulting in A - - 8 x / ' ~ / L .  The expression (26) for the height profile then 
reads 

h(x ,  t ) - O = x / ~ e r f - ~ ( 4 x / L  - 1) (31) 

in agreement with (13). 

5. T W O  D I M E N S I O N S  

The extension of the minimal growth model to two dimensions is 
straightforward in principle; however, in order to obtain realistic island 
morphologies (see, e.g., refs. 1) it would be necessary to include some 
amount of edge diffusion (that is, diffusion of adatoms along island edges) 
and thus to give up the restriction that only singly bonded atoms can 
move. 

We will not enter into these details here, but rather focus on one 
property of the one-dimensional model which carries over to the general 
case: Provided interlayer transport is completely suppressed, the differences 
between the coverages 01, of two subsequent layers are given by a Poisson 
distribution, (7) 

e - ~  

0h-) - -0h- -  h! (32) 

in any dimension. This generalizes the result (7) for the one-dimensional 
case, where the coverage differences are proportional to the terrace lengths. 
For large values of the total coverage 0 = Zt, 0h, (32) implies 

0h ~ (1/2)[ 1 - erf(A )] (33) 

with A defined in (11 ). 
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Fig. 5. Comparison of two-dimensional fl~ull line) and one-dimensional (dashed line) shapes. 
The full line shows a cut through a square lattice array of wedding cakes with a square-shaped 
base. 

Given that the coverages are known, the shape of the growing surface 
can be determined once a model for the mass distribution within one layer 
has been assumed. As a simple example, consider a square lattice array of 
square-shaped islands. If the distance between islands is L and the side 
length of an island in layer h is denoted by 2h, the coverage is Oh = ()~h/L)-" 
and hence 

2j, ~ (L/x/~)  [ 1 - e f t ( z / ) ]  ,/2 (34) 

In Fig. 5 the resulting shape (for a cut along the axis of the square lattice 
array traversing the centers of the islands) is shown and compared to the 
one-dimensional case. The most important change is the loss of the 
up-down symmetry, which is simply due to the fact that the maxima are 
peaks, while the minima are (one-dimensional) grooves. On a more quan- 
titative level one easily shows, using (34), that the typical height difference 
between a peak (H+)  or a groove ( H _ )  and the average height h = 0 is 
given by 

H+_ ~ -,r A _+ (35) 
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with  

L 2 
zl + e x p [ z l +  ] = 2,N 

a n d  

L 
zl _ e x p [ z l  2_ ] = 

For L ~ m the ratio H + / H _  ~ x/~. 

(36)  

(37)  
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